Презентація на тему «Математика в архитектуре»


Рейтинг презентації 5 на основі 2 голосів



Слайд #1
Презентація на тему «Математика в архитектуре» - Слайд #1

Математика в архитектуре


Слайд #2
Презентація на тему «Математика в архитектуре» - Слайд #2

Тесная связь архитектуры и математики известна давно. В Древней Греции – геометрия считалась одним из разделов архитектуры. Современный архитектор должен быть знаком с различными соотношениями ритмических рядов, позволяющих сделать объект наиболее гармоничным и выразительным. Кроме того, он должен знать аналитическую геометрию и математический анализ, основы высшей алгебры и теории матриц, владеть методами математического моделирования и оптимизации. Не случайно при подготовке архитекторов за рубежом большое внимание уделяется математической подготовке и владению компьютером. 


Слайд #3
Презентація на тему «Математика в архитектуре» - Слайд #3

Золотое сечение
Использование золотой пропорции в архитектуре:
Знаменитый русский архитектор М.Ф.Казаков широко использовал в своем творчестве золотое сечение. Его талант был многогранным, но в большей степени он проявился в многочисленных проектах жилых домов и усадеб. Архитектурный шедевр Москвы - дом Пашкова - является одним из наиболее совершенных произведений архитектора В.Баженова. Наружный вид дома сохранился почти без изменений до наших дней, несмотря на то, что он сильно обгорел в 1812 году.


Слайд #4
Презентація на тему «Математика в архитектуре» - Слайд #4

 Храм Василия Блаженного


Слайд #5
Презентація на тему «Математика в архитектуре» - Слайд #5

Золотое сечение в пропорциях Парфенона 


Слайд #6
Презентація на тему «Математика в архитектуре» - Слайд #6

Золотое сечение в пропорциях Парфенона 


Слайд #7
Презентація на тему «Математика в архитектуре» - Слайд #7

Золотое сечение в пропорциях Парфенона 


Слайд #8
Презентація на тему «Математика в архитектуре» - Слайд #8

Так же в архитектуре широко использовались различные виды симметрии. «Симметрия» по-гречески означает «соразмерность, пропорциональность, одинаковость в расположении частей». Современные архитекторы всех стран продолжают использовать в своей работе опыт старых мастеров: проверенные временем золотую пропорцию и симметрию.


Слайд #9
Презентація на тему «Математика в архитектуре» - Слайд #9

Симметрия воспринимается человеком как проявление закономерности, а значит внутреннего порядка. Внешне этот внутренний порядок воспринимается как красота.Симметричные объекты обладают высокой степенью целесообразности – ведь симметричные предметы обладают большей устойчивостью и равной функциональностью в разных направлениях. Все это привело человека к мысли, что чтобы сооружение было красивым оно должно быть симметричным.


Слайд #10
Презентація на тему «Математика в архитектуре» - Слайд #10

Симметрия воспринимается человеком как проявление закономерности, а значит внутреннего порядка. Внешне этот внутренний порядок воспринимается как красота.Симметричные объекты обладают высокой степенью целесообразности – ведь симметричные предметы обладают большей устойчивостью и равной функциональностью в разных направлениях. Все это привело человека к мысли, что чтобы сооружение было красивым оно должно быть симметричным.


Слайд #11
Презентація на тему «Математика в архитектуре» - Слайд #11

Как математика помогает добиться прочности сооружений.
Люди с древних времен, возводя свои жилища, думали, в первую очередь, об их прочности. Прочность сооружения обеспечивается не только материалом, из которого оно создано, но и конструкцией, которая используется в качестве основы при его проектировании и строительстве. Прочность сооружения напрямую связана с той геометрической формой, которая является для него базовой. Математик бы сказал, что здесь очень важна геометрическая форма (тело), в которое вписывается сооружение.Самым прочным архитектурным сооружением с давних времен считаются египетские пирамиды. Как известно они имеют форму правильных четырехугольных пирамид.Именно эта геометрическая форма обеспечивает наибольшую устойчивость за счет большой площади основания. 


Слайд #12
Презентація на тему «Математика в архитектуре» - Слайд #12

 Этапом развития архитектурных конструкций явилась каркасная система. Аркбутаны являлись каркасом, которые окружал сооружение и принимал на себя основные нагрузки. Арочная конструкция послужила прототипом каркасной конструкции, которая сегодня используется в качестве основной при возведении современных сооружений из металла, стекла и бетона. Достаточно вспомнить конструкции известных башен: Эйфелевой башни в Париже и телебашни на Шаболовке.


Слайд #13
Презентація на тему «Математика в архитектуре» - Слайд #13

Другой интересной для архитекторов геометрической поверхностью оказался гиперболический параболоид. Это поверхность, которая в сечении имеет параболы и гиперболу. Появление новых строительных материалов делает возможным создание тонкого железобетонного каркаса и стен из стекла. Достаточно вспомнить американские небоскребы или, например, здание Кремлевского дворца съездов созданных из стекла и бетона. Именно эти материалы и каркасные конструкции стали преобладающими в архитектурных сооружениях XX века. Они обеспечивают зданиям высокую степень прочности.


Слайд #14
Презентація на тему «Математика в архитектуре» - Слайд #14

Ни один из видов искусств так тесно не связан с геометрией как архитектура.
Архитектурные произведения живут в пространстве, являются его частью, вписываясь в определенные геометрические формы. Кроме того, они состоят из отдельных деталей, каждая из которых также строится на базе определенного геометрического тела. Часто геометрические формы являются комбинациями различных геометрических тел. 


Слайд #15
Презентація на тему «Математика в архитектуре» - Слайд #15

Геометрическая форма сооружения настолько важна, что бывают случаи, когда в имени или названии здания закрепляются названия геометрических фигур. Так, здание военного ведомства США носит название Пентагон, что означает пятиугольник. Связано это с тем, что, если посмотреть на это здание с большой высоты, то оно действительно будет иметь вид пятиугольника. На самом деле только контуры этого здания представляют пятиугольник. Само же оно имеет форму многогранника.


Слайд #16
Презентація на тему «Математика в архитектуре» - Слайд #16

В Спасской башне Московского кремля в основании можно увидеть прямой параллелепипед, переходящий в средней части в фигуру, приближающуюся к цилиндру, завершается же она пирамидой. При более детальном рассмотрении и изучении деталей можно увидеть: круги – циферблаты курантов; шар – основание для крепления рубиновой звезды; полукруги – арки одного из рядов бойниц на фасаде башни и т.д. Таким образом, можно говорить о пространственных геометрических фигурах, которые служат основой сооружения в целом или отдельных его частей, а также плоских фигурах, которые обнаруживаются на фасадах зданий.


Слайд #17
Презентація на тему «Математика в архитектуре» - Слайд #17

Антисимметрия это противоположность симметрии, ее отсутствие. Примером антисимметрии в архитектуре является Собор Василия Блаженного в Москве, где симметрия отсутствует полностью в сооружении в целом.
Однако, удивительно,
что отдельные части
этого собора
симметричны и
это создает
его гармонию.


Слайд #18
Презентація на тему «Математика в архитектуре» - Слайд #18

Диссимметрия – это частичное отсутствие симметрии, расстройство симметрии, выраженное в наличии одних симметричных свойств и отсутствии других. Примером диссимметрии в архитектурном сооружении может служить Екатерининский дворец в Царском селе под Санкт-Петербургом. Практически в нем полностью выдержаны все свойства симметрии за исключением одной детали.
Наличие Дворцовой церкви расстраивает симметрию здания в целом. Если же
не принимать во
внимание эту
церковь, то Дворец
становится
симметричным.


Слайд #19
Презентація на тему «Математика в архитектуре» - Слайд #19

Вывод:
Математика предлагает архитектору ряд, если так можно назвать, общих правил организации частей в целое, которые помогают:
Расположить эти части в пространстве, так, что в них проявлялся порядок;
Установить определенное соотношение между размерами частей и задать для изменения размеров (уменьшения или увеличения) определенную единую закономерность, что обеспечивает восприятие целостности и представление о порядке;
Выделить определенное место в пространстве, где будет размещаться сооружение, описать его определенной математической формой, которая также позволит выделить его из других сооружений и внести  в их  состав, создав новую композицию, новый архитектурный ансамбль.