Презентація "Проценты"

+1
Попередній слайд
Наступний слайд


Завантажити презентацію "Проценты"
Слайд #1
Исследовательская работа по теме «ПРОЦЕНТЫ»


Слайд #2
ПЛАН
Введение
1. Из истории происхождения процентов
2. Решение задач на проценты разными способами
3. Решение задач по формуле сложных процентов
4. Решение задач на смеси и сплавы.
5. Применение процентов в жизни
Заключение
Список литературы


Слайд #3
Почему я выбрал тему «Проценты»?
Проценты - это одна из сложнейших тем математики, и очень многие учащиеся затрудняются или вообще не умеют решать задачи на проценты. А понимание процентов и умение производить процентные расчёты необходимы для каждого человека. Прикладное значение этой темы очень велико и затрагивает финансовую, экономическую, демографическую и другие сферы нашей жизни. Изучение процента продиктовано самой жизнью. Умение выполнять процентные вычисления и расчеты необходимо каждому человеку, так как с процентами мы сталкиваемся в повседневной жизни. Немецкий физик 18-го столетия Лихтенберг сказал: « То, что вы были принуждены открыть сами, оставляет в вашем уме дорожку, которой вы сможете снова воспользоваться, когда в том возникнет необходимость». Поэтому я решил и сделал подборку задач из ГИА - 9 классов, из ЕГЭ - 11 классов на банковские проценты, где применяется формула сложных процентов.


Слайд #4
Цель исследовательской работы
· Расширение знаний о применении процентных вычислений в задачах и из разных сфер жизни человека.


Слайд #5
Задачи:
· Познакомиться с историей возникновения процентов;
· Решать задачи на проценты разными способами;
· Сделать подборку задач из ГИА - 9 кл., ЕГЭ -11кл., решаемые по формуле сложных процентов;
· Поработать в текстовом редакторе;
· Поработать с ресурсами Internet;
· Получить опыт публичного выступления.


Слайд #6
История создания процентов.
В Европе в средние века расширилась торговля и, следовательно, особое внимание обращалось на умение вычислять проценты. Тогда приходилось рассчитывать не только проценты, но и проценты с процентов (сложные проценты). Часто конторы и предприятия для облегчения расчетов разрабатывали особые таблицы вычисления процентов. Эти таблицы держались в тайне, составляли коммерческий секрет фирмы. Впервые таблицы были опубликованы в 1584 году Симоном Стевином


Слайд #7
Решение задач на проценты разными способами
Задачи с процентами можно решить разными способами:
уравнением;
составлением таблицы;
применяя пропорцию;
по действиям;
используя правила.


Слайд #8
Решение задач на сложные проценты
Сложным процентом называется сумма дохода, которая образуется в результате инвестирования денег при условии, что сумма начисленного простого процента не выплачивается в конце каждого периода, а присоединяется к сумме основного вклада и в следующем платежном периоде сама приносит доход .
Сложные проценты - это проценты, полученные на начисленные проценты


Слайд #9
Формула сложного процента
х(1+ 0,01а)
где х - начальный вклад, сумма.
а - процент(ы) годовых
n- время размещения вклада в банке
х(1- 0,01а)
периодическое увеличение некоторой величины
на одно и то же число процентов
периодическое уменьшение некоторой величины
на одно и то же число процентов.


Слайд #10
Решение задач
Задача 1:
Вкладчик открыл счет в банке, внеся 2000 рублей на вклад, годовой доход по которому составляет 12%, и решил в течение шести лет не брать процентные начисления. Какая сумма будет лежать на счете через шесть лет?


Слайд #11
Решим эту задачу по формуле сложных
процентов.
первоначальный вклад - 2000
процент годовых - 12
n - 6 лет, значит
2000(1 + 0,12) = 2000*1,126 = 2000*1,973823 = 3947,65
ОТВЕТ: через 6 лет на счете будет лежать сумма
в виде 3947 руб. и 65 коп..


Слайд #12
Задача 2:
После двух последовательных снижений цен на одно и то же число процентов стоимость товара с 400 рублей снизилась до 324 рублей. На сколько процентов стоимость товара снижалась каждый раз?


Слайд #13
Решение:
400*(1-0,01а)=324
20(1 - 0,01а) = 18
1 - 0,01а = 0,9
а = 10
ОТВЕТ: стоимость товара каждый раз
снижалась на 10%


Слайд #14
Задача №3
В соответствии с договором фирма с целью компенсации потерь от инфляции была обязана в начале каждого квартала (3 месяца) повышать сотруднику зарплату на 2%. Однако в связи с финансовыми затруднениями она смогла повышать ему зарплату только раз в полгода (в начале следующего полугодия). На сколько % фирма должна повышать зарплату каждые полгода, чтобы первого января следующего года зарплата сотрудника была равна той, которую он получил бы в режиме повышения, предусмотренной договором?


Слайд #15
Решение:
Для решения составим таблицу
Через какое время повышается
на сколько % повышается
Какая зарплата будет
Через каждые 3 месяца
2%
х(1+0,02)4
Через каждые полгода
а%
х(1+0,01а)2


Слайд #16
По таблице составим уравнение:
х(1+0,02) = х(1+0,01а)²
(1+0,02)² = (1+0,01а)
1+0,04+0,0004=1+0,01а
0,0404=0,01а
а = 4,04%
ОТВЕТ: через каждый полгода зарплату сотрудникам
надо поднимать на 4,04%


Слайд #17
Решение задач на смеси и сплавы.
Задача 1.
При смешивании 5%-ного раствора кислоты с 40% -ным раствором кислоты получили 140г 30%-ного раствора. Сколько граммов каждого раствора было для этого взято?


Слайд #18
Рассмотрим старинный способ решения этой задачи.
Друг под другом пишутся содержания кислот имеющихся растворов, слева от них и
примерно посередине – содержание кислоты в растворе, который должен получиться
после смешивания. Соединив написанные числа чёрточками получим такую схеме:
30
5
40
Рассмотрим пары 30 и 5, 30 и 40. В каждой паре из большего числа вычтем меньшее и результат запишем в конце соответствующей чёрточки . Получится такая схема:
10

30
5
40 25
Из неё делается заключение, что 5%-ного раствора следует взять 10 частей,
а 40% - ого 25 частей, т.е. для получения 140г. 30% - ого раствора нужно взять
5% - ого раствора 40г., а 40% - ого - 100г .(10+25=35частей всего, 140:35=4г-вес одной
части, 4×10=40г, 4×25=100г.)


Слайд #19
Задача 2.
Имеется серебро 12-й, 11-й и 5-й пробы.
Сколько какого серебра надо взять, для получения 1 кг.
серебра 9-й пробы?
Применим метод, рассмотренный в задаче 1 дважды: первый раз,
взяв серебро с наименьшей и наибольшей пробой, а во второй
раз – с наименьшей и средней пробой. Получим следующую схему:
3 + 2 = 5
4
4
13

5
9

5
9
12
4
3
4
2

11
4


Слайд #20

При этом найдены доли , в которых нужно сплавлять серебро наибольшей и средней
пробы (4 и 4). Сложив затем доли серебра наименьшей пробы , найденные в первой и
во второй раз (3+2=5), получим долю серебра наименьшей пробы в общем сплаве.
Таким образом, надо взять
кг. серебра 5-й пробы,
кг. серебра 12-й пробы,
Данная задача имеет не единственное решение.
9-й пробы серебро можно получить , сплавляя серебро 5-й и 12-й пробы
в отношении 3:4(1сплав) или серебро 5-й и 11-й пробы в отношении 2:4(2 сплав).
Соединяя 1 и 2 сплавы в любой пропорции, мы будем получать
различные сплавы серебра 9-й пробы.
кг. серебра 11-й пробы.


Слайд #21
Задача 3.
Имеется 240г. 70% -ого раствора уксусной кислоты. Нужно получить 6% - ный раствор кислоты. Сколько граммов воды (0%-ный раствор) нужно прибавить к имеющемуся раствору?


Слайд #22
Решение.
0 64

6
70 0
Итак, 240:6=40г.- составляет одна часть, а а воды следует взять 64 части, т.е,
× 40=2560г
64


Слайд #23
Применение процентов в жизни.
В настоящее время понимание процентов и умение
производить процентные расчеты, необходимы
каждому человеку:
Прикладное значение этой темы очень велико и
затрагивает финансовую, экономическую,
демографическую и другие сферы нашей жизни.
Изучение процента продиктовано самой жизнью.
Умение выполнять процентные вычисления и расчеты необходимо каждому человеку, так как с процентами мы сталкиваемся в повседневной жизни.


Слайд #24
Заключение.
Я выбрал эту тему потому, что мне нравится математика и я считаю, что математику надо знать хорошо.Я хотел получить полноценные представления о процентах, об их роли в повседневной жизни.
Работа над данной темой , способствовала расширению
моего математического кругозора, развитию умения анализировать, сравнивать, глубоко и прочно усвоив материал. Мне хочется порекомендовать ученикам формулу сложных
процентов и применять её при решении задач на проценты.


Слайд #25
Литература
Крамор В.С. «Повторяем и систематизируем школьный курс алгебры и начало анализа». М., «Просвещение» 1990 год.
Журнал «Математика в школе.» 1998г.№5.
Ф.Ф. Нагибин «Математическая шкатулка» М.«Просвещение»1988год.