Презентація "Розміщення"

Попередній слайд
Наступний слайд


Завантажити презентацію "Розміщення"
Слайд #1
Розміщення


Слайд #2
Без повторень
З повторенням
Без повторень
З повторенням
Розміщення


Слайд #3
Наприклад, з множини з трьох цифр {1;5;7} можна скласти такі розміщення з двох елементів без повторень:
(1; 5), (1; 7), (5; 7), (7; 1), (7; 5).
Кількість розміщень з n елементів по к позначають (читають: «А з n по к»). Як бачимо,
 
Розміщенням з n елементів по k називають будь-яку впорядковану множину з k, складену з елементів заданої n-елементної множини.


Слайд #4
Якщо позначити символом з n елементів по k, то буде справедлива формула:
Дану формулу можна також записати у вигляді:
 


Слайд #5
1) Скількома способами чотири хлопці можуть запросити чотирьох із шести дівчат на танець?
Розв’язок: два хлопці не можуть одночасно запросити одну і ту ж дівчину. І варіанти, при яких одні і ті ж дівчата танцують з різними хлопцями рахуються, різними, тому:
= = 360.
Відповідь: 360 способів.
 
Задачі


Слайд #6
5) Вздовж дороги розташовані 6 світлофорів, кожен з яких має 3 стани: "червоний", "жовтий", "зелений". Скільки може бути різних ситуацій на дорозі, що спричинені станами цих світлофорів?
Розв’язання: Випишемо декілька комбінацій: ЧЧЖЗЗЧ, ЖЖЖЖЖЖ, ЗЖЖЗЧЧ... Ми бачимо, що склад вибірки змінюється і порядок елементів істотний. Тому застосовуємо формулу розміщень з повтореннями з 3 по 6:
==729.
Відповідь. 729.
 


Слайд #7
3) З 18 студентів групи необхідно вибрати старосту, його заступника і профорга. Скільки існує варіантів такого вибору?
Розв’язання: Один і той же студент не може займати відразу декілька посад. Тому використаємо формулу:
=𝑛(𝑛−1)(𝑛−2)…(𝑛−𝑘+106000


Слайд #8
4) Скільки трицифрових чисел можна утворити з цифр 2, 3, 4, 7, не повторюючи цифри в запису числа?
Розв’язання: використовуємо формулу:


Відповідь: 24 варіантів чисел.
 


Слайд #9
5) Скільки п’ятицифрових чисел можна скласти з цифр 4,5,6,7,8,9, якщо цифри в числі не повторюються?
Розв’язання: Знов використовуємо вже знайомі нам формули.Отримуємо: 0
Відповідь: маємо 360 чисел.